NBER

Anna Orlik, Laura Veldkamp

Bibliographic Information

NBER Working Paper No. 20445
Issued in August 2014, Revised in October 2015
NBER Program(s):AP, EFG, ME

This paper was revised on October 27, 2015

Available Formats

Abstract

A fruitful emerging literature reveals that shocks to uncertainty can explain asset returns, business cycles and financial crises. The literature equates uncertainty shocks with changes in the variance of an innovation whose distribution is common knowledge. But how do such shocks arise? This paper argues that people do not know the true distribution of macroeconomic outcomes. Like Bayesian econometricians, they estimate a distribution. Using real-time GDP data, we measure uncertainty as the conditional standard deviation of GDP growth, which captures uncertainty about the distributions estimated parameters. When the forecasting model admits only normally-distributed outcomes, we find small, acyclical changes in uncertainty. But when agents can also estimate parameters that regulate skewness, uncertainty fluctuations become large and counter-cyclical. The reason is that small changes in estimated skewness whip around probabilities of unobserved tail events (black swans). The resulting forecasts resemble those of professional forecasters. Our uncertainty estimates reveal that revisions in parameter estimates, especially those that affect the risk of a black swan, explain most of the shocks to uncertainty.

National Bureau of Economic Research
1050 Massachusetts Ave.
Cambridge, MA 02138
617-868-3900
info@nber.org

Twitter RSS

View Full Site: One timeAlways