NBER

Judging Judge Fixed Effects

Brigham R. Frandsen, Lars J. Lefgren, Emily C. Leslie

Bibliographic Information

NBER Working Paper No. 25528
Issued in February 2019
NBER Program(s):LE, LS

Available Formats

You may purchase this paper on-line in .pdf format from SSRN.com ($5) for electronic delivery.

Access to NBER Papers

You are eligible for a free download if you are a subscriber, a corporate associate of the NBER, a journalist, an employee of the U.S. federal government with a ".GOV" domain name, or a resident of nearly any developing country or transition economy.

If you usually get free papers at work/university but do not at home, you can either connect to your work VPN or proxy (if any) or elect to have a link to the paper emailed to your work email address below. The email address must be connected to a subscribing college, university, or other subscribing institution. Gmail and other free email addresses will not have access.

E-mail:

Abstract

We propose a test for the identifying assumptions invoked in designs based on random assignment to one of many "judges.'' We show that standard identifying assumptions imply that the conditional expectation of the outcome given judge assignment is a continuous function with bounded slope of the judge propensity to treat. The implication leads to a two-part test that generalizes the Sargan-Hansen overidentification test and assesses whether implied treatment effects across the range of judge propensities are possible given the domain of the outcome. We show the asymptotic validity of the testing procedure, demonstrate its finite-sample performance in simulations, and apply the test in an empirical setting examining the effects of pre-trial release on defendant outcomes in Miami. When the assumptions are not satisfied, we propose a weaker average monotonicity assumption under which IV still converges to a proper weighted average of treatment effects.

National Bureau of Economic Research
1050 Massachusetts Ave.
Cambridge, MA 02138
617-868-3900
info@nber.org

Twitter RSS

View Full Site: One timeAlways