NBER

Synthetic Difference In Differences

Dmitry Arkhangelsky, Susan Athey, David A. Hirshberg, Guido W. Imbens, Stefan Wager

Bibliographic Information

NBER Working Paper No. 25532
Issued in February 2019
NBER Program(s):LS

Available Formats

You may purchase this paper on-line in .pdf format from SSRN.com ($5) for electronic delivery.

Access to NBER Papers

You are eligible for a free download if you are a subscriber, a corporate associate of the NBER, a journalist, an employee of the U.S. federal government with a ".GOV" domain name, or a resident of nearly any developing country or transition economy.

If you usually get free papers at work/university but do not at home, you can either connect to your work VPN or proxy (if any) or elect to have a link to the paper emailed to your work email address below. The email address must be connected to a subscribing college, university, or other subscribing institution. Gmail and other free email addresses will not have access.

E-mail:

Abstract

We present a new perspective on the Synthetic Control (SC) method as a weighted least squares regression estimator with time fixed effects and unit weights. This perspective suggests a generalization with two way (both unit and time) fixed effects, and both unit and time weights, which can be interpreted as a unit and time weighted version of the standard Difference In Differences (DID) estimator. We find that this new Synthetic Difference In Differences (SDID) estimator has attractive properties compared to the SC and DID estimators. Formally we show that our approach has double robustness properties: the SDID estimator is consistent under a wide variety of weighting schemes given a well-specified fixed effects model, and SDID is consistent with appropriately penalized SC weights when the basic fixed effects model is misspecified and instead the true data generating process involves a more general low-rank structure (e.g., a latent factor model). We also present results that justify standard inference based on weighted DID regression. Further generalizations include unit and time weighted factor models.

National Bureau of Economic Research
1050 Massachusetts Ave.
Cambridge, MA 02138
617-868-3900
info@nber.org

Twitter RSS

View Full Site: One timeAlways