NBER

We are all Behavioral, More or Less: Measuring and Using Consumer-level Behavioral Sufficient Statistics

Victor Stango, Jonathan Zinman

Bibliographic Information

NBER Working Paper No. 25540
Issued in February 2019
NBER Program(s):AG, EFG, LE, LS, ME, PE

The NBER Bulletin on Aging and Health provides summaries of publications like this.  You can sign up to receive the NBER Bulletin on Aging and Health by email.

Available Formats

You may purchase this paper on-line in .pdf format from SSRN.com ($5) for electronic delivery.

Access to NBER Papers

You are eligible for a free download if you are a subscriber, a corporate associate of the NBER, a journalist, an employee of the U.S. federal government with a ".GOV" domain name, or a resident of nearly any developing country or transition economy.

If you usually get free papers at work/university but do not at home, you can either connect to your work VPN or proxy (if any) or elect to have a link to the paper emailed to your work email address below. The email address must be connected to a subscribing college, university, or other subscribing institution. Gmail and other free email addresses will not have access.

E-mail:

Abstract

Can a behavioral sufficient statistic empirically capture cross-consumer variation in behavioral tendencies and help identify whether behavioral biases, taken together, are linked to material consumer welfare losses? Our answer is yes. We construct simple consumer-level behavioral sufficient statistics—“B-counts”—by eliciting seventeen potential sources of behavioral biases per person, in a nationally representative panel, in two separate rounds nearly three years apart. B-counts aggregate information on behavioral biases within-person. Nearly all consumers exhibit multiple biases, in patterns assumed by behavioral sufficient statistic models (a la Chetty), and with substantial variation across people. B-counts are stable within-consumer over time, and that stability helps to address measurement error when using B-counts to model the relationship between biases, decision utility, and experienced utility. Conditional on classical inputs—risk aversion and patience, life-cycle factors and other demographics, cognitive and non-cognitive skills, and financial resources—B-counts strongly negatively correlate with both objective and subjective aspects of experienced utility. The results hold in much lower-dimensional models employing “Sparsity B-counts” based on bias subsets (a la Gabaix) and/or fewer covariates, illuminating lower-cost ways to use behavioral sufficient statistics to help capture the combined influence of multiple behavioral biases for a wide range of research questions and applications.

National Bureau of Economic Research
1050 Massachusetts Ave.
Cambridge, MA 02138
617-868-3900
info@nber.org

Twitter RSS

View Full Site: One timeAlways